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DIRECT IDENTIFICATION OF ELASTIC
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ANALYSIS: EXPERIMENTAL RESULTS
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The determination of the six elastic stiffnesses of thin anisotropic plates from vibration
tests is usually performed with numerical procedures based on the finite element or the
Rayleigh–Ritz method, which both require assumptions concerning the studied mode
shapes. The present paper describes a method based on the measurement and the processing
of natural frequencies as well as mode shapes of the vibrating tested plate. As a result, the
unknown stiffnesses are determined directly, without any iterative calculations. The
experimental aspects of the method are presently described and several results illustrate the
relevance of the approach.

7 1998 Academic Press Limited

1. INTRODUCTION

In part 1 of this study [1], theoretical and numerical aspects of a method allowing the direct
determination of flexural stiffnesses of thin composite plates were presented. The main
features of this approach were first the fact that natural frequencies and mode shapes of
free–free vibrating plates are taken into account, unlike the usual approaches e.g.,
references [2–8], which only consider natural frequencies. Secondly the fact that the
unknown stiffnesses are determined directly, without any iterative calculations. Numerical
simulations were carried out and showed that the identification procedure was accurate
and not too sensitive to random experimental errors. In the first part of the present paper,
the main theoretical aspects of the method are recalled. The experimental set-up is then
described and some adaptations of the identification method to the processing of
experimental results are discussed. Experimental results carried out on a set of plates are
finally presented.

2. BACKGROUND

The following results are directly recalled from the first part of this study [1].

2.1.     

The global equilibrium of a uniform free–free plate vibrating in one of its natural modes
i is firstly written with the principle of virtual work

† Present address: LERMES-CUST, Université Blaise Pascal, 24, avenue des Landais, BP 206, 63174 Aubière
Cedex, France.
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where the Dij’s are the flexural stiffnesses, vi is the ith natural frequency, Wi is the
corresponding natural mode deflection, h, S and r are, respectively, the thickness, the
surface area and the specific mass of the plate, and v is the virtual field. The above equation
can be written as

Einternal =Einertial . (2)

Einternal is the internal virtual work and Einertial is the virtual work done by the inertial forces.

2.2.     

Assuming that the mode shape Wi and the natural frequency vi are measured, one can
write a new linear equation of the type of equation (1) for any different virtual field v.
However, from a practical point of view, it has been shown in the first part of this study
[1], that the best strategy is to consider three modes of vibration: torsion, bending along
the x-direction and bending along the y-direction and to associate three independent
quadratic virtual fields of the type

8v1 (x, y)= x2

v2 (x, y)= y2

v3 (x, y)= xy
. (3)

For the above three quadratic virtual fields, two out of the three partial derivatives
required in equation (1) are always zero and the third one is constant. Three terms are
therefore zero in equation (1) for each of the virtual fields presented in equation (3). For
instance, considering v1 as the virtual field, equation (1) reduces to

2Kxx D11 +2Kyy D12 +4Kxy D16 =−rhv2
i gS

Wi x2 dS, (4)

where only three unknowns are remaining.
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For the sake of simplicity, the following notations are introduced. Kxx , Kyy and Kxy are
integrals directly proportional to the mean curvature components of the mode shape of
the vibrating plate. They are defined by

Kxx =gS

12W
1x2 dS

Kyy =gS

12W
1y2 dS. (5)

Kxy =gS

12W
1x1y

dS

2.3.   

Considering the above three virtual fields and the three modes leads to an
overdetermined linear system of nine equations and six unknowns, which is solved using
the least-squares method to determine the six stiffnesses.

This system is of the type

AD=B, (6)

where A is a 9×6 matrix, D is a 6×1 matrix and B is a 9×1 matrix. They are defined
by
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Subscripts and superscripts t, by and bx denote quantities depending respectively on the
twisting mode, the bending mode along the y-direction and the bending mode along the
x-direction. I(j)

i are integrals proportional to the virtual work of oriental forces

I(j)
i =gs

Wj (x, y)vi (x, y) dS; i=1, 2, 3; j= t, by, bx. (10)

Numerical simulations carried out in the first part of the study [1] with different types
of plates showed the accuracy of the method. It will be shown in section 4 that it is
relevant to slightly modify the three fields in equation (3) to simplify the calculation of
the virtual work of the inertial forces. This is due to the fact that the deflection fields Wj

are not directly provided by the optical set-up used in the present work as slope fields are
effectively measured. Let us now examine the practical experimental aspects of the
procedure.

Figure 1. Fixation of the tested plate and mask for the twisting mode.
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3. EXPERIMENTAL SET-UP

3.1.          

Figure 1 shows the tested specimen which is suspended by four very thin threads fixed
near the nodal lines of the mode shape to be measured. Hence, free–free boundary
conditions are obtained. The excitation technique is obtained with a loudspeaker located
near the specimen. Non-contact devices allowing the measurement of the natural
frequencies are not available in the laboratory and a Bruel & Kjaër type 4374 accelerometer
is used. It is located at one of the corners of the plate for the twisting mode and at the
center of the plate for the two last modes (see Figures 5–7). The deflection is maximum
at these points. Hence, the sensitivity will be optimum for the measurement of acceleration.
Note that the mass of the accelerometer is not negligible compared to the mass of the tested
plates. It has therefore a significant influence on the mode shapes of the tested plates. This
influence will be taken into account later in the identification procedure. Natural
frequencies are determined by frequency sweeping. The sine signal is provided by the
generator of a Bruel & Kjaër multi-channel analysis system 3550 through an
audio-amplifier. The acceleration signal of the tested specimen is analyzed by the system
and the first natural frequencies are detected.

As explained previously, three mode shapes must be measured. An optical set-up
described in the next section is used. During the measurement of the mode, the frequency
of the loudspeaker is adjusted to the studied natural frequency and the acoustic waves force
the specimen to vibrate in the corresponding mode shape. Note that the magnitude of the
deflection must be high enough to be measurable. Hence, a ‘‘mask’’ is interposed between
the loudspeaker and the plate to increase the efficiency of the loudspeaker. The shape of
the mask obviously depends on the shape of the mode to be measured. The mask designed
for the twisting mode is depicted in Figure 1.

3.2.  -

Many optical techniques providing mode shapes are available in the literature. Most of
them are based on the principle of holography or speckle. To the knowledge of the authors,
only qualitative information is often extracted from those measurements. The present
approach, however, requires quantitative information, as integrals in equation (1) directly
involve curvatures and deflections. A specific optical set-up has therefore been developed.
The principle is based on deflectometry, not in the form of the moiré deflectometry used
by Kafri et al. [9, 10, 11], but in the simpler set-up of the phase-stepped Ronchi test [12, 13].
It is simpler than other shearing interferometry set-ups [14], and allows easy phase-shifting,
which is a current method to improve the accuracy of optical setups. Precise measurement
of the local slopes of the surface under investigation can be done and only one
differentiation has to be done in order to obtain curvatures, and one integration to obtain
deflections.

The principle is sketched in Figure 2. The optical method relies on specular reflection
from the plate. Hence the plate is coated with a very thin layer of epoxy resin. It is then
illuminated by a collimated beam obtained from a light point source (LS) located at the
focus of the fields lens (FL). After reflection, all rays having the same direction (e.g., rays
reflected at points A and B) converge at the same point j, h of the focal plane of the lens
FL, with:

j=2f
1w
1x

, h=2f
1w
1y

, (11)

where w is the deflection.
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Figure 2. Schematic of the deflectometric set-up, using a filtering slit. A slope contour is seen on the screen.
BS: beamsplitter; FL: field lens; IL: imaging lens; S: filtering source; LS: light source.

If a vertical slit S (i.e., aligned with the h-axis) is placed at this point, the light coming
from points where the local x-slope is different is blocked. In this case, the image of the
plate made by the imaging lens (IL) only receives light from points with the same x-slope.
So, x-slope contours are observed. If a horizontal slit is used, y-slope contours are
observed. In order to have more information at once, the slit can be replaced by an array
of slits, that is a grid, as indicated in Figure 3. In the following, the grid is supposed to
have its lines oriented parallel to the h-axis, so that x-slopes are measured. The obtained
slope contour pattern looks very similar to classical interference fringes, apart from the
fact that they are much more stable. Indeed, low frequency vibrations induce mainly rigid
body translations which do not change slopes. The present set-up can be used to realize
static or dynamic measurements. In this last case, a chopper is added in front of the light
source to freeze the motion of the vibrating plate. The synchronization between the
chopper and the vibrating device is tuned to record the image of the plate at the maximum
deflection. Full details concerning the characteristics of this optical set-up can be found
in references [15, 16].

4. CALCULATION OF THE INTEGRALS

4.1.   

As may be seen in the basic equation (1), the coefficient of each unknown Dij is directly
obtained from integrals involving the average curvatures of the three considered mode
shapes. From a practical point of view, each measured slope pattern of the mode shape
provides two curvature patterns by numerical differentiation. The mean value of each
curvature field is then computed. Note that the two cross derivatives 12w/1x1y and
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12w/1y1x are theoretically equal. This property is used to check the consistency of two sets
of slope fields obtained in two orthogonal directions.

4.2.      

The integrals I( j)
i defined in equation (10) directly involve the deflection Wj corresponding

to the mode j. The experimental data are however presently the two slopes, i.e., the two
partial derivatives of the deflection in two orthogonal directions. A relevant strategy has
therefore to be found to determine these integrals from slopes. This problem did not
appear in the first part of the study [1], as the finite element program used for
the simulations directly provided the deflections corresponding to a given mode. In
the present experimental part, the following method has been used.

Consider that the shape of the tested plate is a 2a×2b rectangle and let us expand the
deflection with Legendre polynomials. Such polynomials are chosen because of their
orthogonality property on such surfaces.

W(x, y)= s
a

i=0

s
a

j=0

Aij Pi 0xa1Pj 0yb1. (12)

x and y are divided respectively by a and b because the orthogonality property of Legendre
polynomials is valid over [−1, 1]. Denoting u a variable lying between −1 and 1, the
orthogonality property can be written as

Figure 3. Deflectometric set-up using a filtering grid. Slope contours looking like a fringe pattern are imaged
onto the screen.
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and the first four Legendre polynomials are

P0 (u)=1

P1 (u)= u
g
G

G

G

G

F

f

P2 (u)= 3
2 u2 − 1

2

. (14)

P3 (u)= 5
2 u3 − 3

2 u

Introducing equation (12) in the definition of I given in equation (10), I becomes

I=g
a

−a g
b

−b

s
a

i=0

s
a

j=0

Aij Pi 0xa1Pj 0yb1v(x, y) dx dy. (15)

Remembering now that the three virtual fields leading to average curvatures in equation
(1) are quadratic, one can choose advantageously the three following fields instead of v1,
v2 and v3 given in equation (3). These new fields are directly products of Legendre
polynomials.

v'1 (x, y)= 2
3 P2 0xa1P0 0yb1= v1 0xa ,

y
b1− 1

3

v'2 (x, y)= 2
3 P0 0xa1P2 0yb1= v2 0xa ,

y
b1− 1

3. (16)g
G

G

G

G

G

G

G

G

F

f
v'3 (x, y)=P1 0xa1P1 0yb1= v3 0xa ,

y
b1

There are two differences between the above fields and the fields recalled in equation
(3). First, a constant term −1

3 has been presently added to v1 and v2. From a mechanical
point of view, this constant term introduces a constant virtual deflection which has no
influence as the plate is in equilibrium. Second, x and y are divided by a and b respectively
to gain the benefit of the orthogonality property of the Legendre polynomials. As a result,
second derivatives in equation (1) are also divided by the same quantity and the linear
system is finally not modified. Considering the above virtual fields as products of Legendre
polynomials significantly simplifies equation (15). For example, with v= v1, I becomes I1

I1 =g
a

−a g
b

−b

s
a

i=0

s
a

j=0

Aij Pi 0xa1Pj 0yb12
3 P2 0xa1P0 0yb1 dx dy. (17)

Introducing now the orthogonality property, I1 can be written as

I1 = 2
3 ×

2
2×2+1

×
2

2×0+1
A20 ×

1
ab

. (18)
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Finally

I1 = 8
15 A20 ×

1
ab

. (19)

In the same way, denoting I2 and I3 the integrals corresponding to v'2 and v'3 respectively

g
G

G

F

f

I2 = 8
15 A02 ×

1
ab

I3 = 4
9 A11 ×

1
ab

. (20)

So, only three coefficients of the Legendre polynomial expansion of W(x, y) are
necessary to compute the virtual work of the inertial forces for a rectangular plate.

The last point is to retrieve these coefficients from slope fields which constitute the
experimental data provided by the optical set-up. It can be shown [17] using the
orthogonality property of the Legendre polynomials that the Aij coefficients in equation
(12) can easily be computed from slope fields by two different ways when ij$ 0

Aij =
2i+1

4 g
a

−a g
b

−b

1W
1x 0Pi−1 0xa1−Pi+1 0xa11Pj 0yb1 dx dy [ie 1, [je 0

g
G

G

G

G

G

G

F

f

or

Aij =
2j+1

4 g
a

−a g
b

−b

1W
1y 0Pj−1 0yb1−Pj+1 0yb11Pi 0xa1 dx dy [ie 0, [je 1.

(21)

Hence, A20 and A02 can be retrieved from one slope field only while A11 can be retrieved
from both fields. This property can be used to assess the consistency of the measurements.
From a practical point of view, the average of those two values is considered in the
calculations. Note finally that using the present approach avoids the determination of
coefficient A00, which is the constant of integration required to obtain the deflection from
the slopes.

4.3.           

Equation (1) has been written for a free–free plate only. As an accelerometer has been
used in the experiments to measure the frequencies, the contribution of an additional mass
has to be taken into account in this equation. This can be done easily by adding to the
right-hand side in equation (1) the virtual work of inertial forces due to the accelerometer.
This quantity, called correcting term due to the accelerometer, is denoted Eaccelerometer in the
following

Eaccelerometer =Macc gacc v'i (xacc , yacc ), (22)

where Macc is the mass of the accelerometer, gacc is the acceleration measured by the
accelerometer, xacc , yacc are the co-ordinates of the accelerometer and v'i (xacc , yacc ) is the
value of the virtual field at the location of the accelerometer. This value is given for each
mode and each virtual field in Table 1. As a result, equation (2) becomes

Einternal =Einertial +Eaccelerometer , (23)

and a matrix C has to be added in system (6)
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T 1

Value of the virtual field at the location of the accelerometer

Vibration mode xacc yacc Virtual field Value of the virtual field

Torsion a b v'1 2
3

v'2 2
3

v'3 1

Bending, y direction 0 0 v'1 −1
3

v'2 −1
3

v'3 0

Bending, x direction 0 0 v'1 −1
3

v'2 −1
3

v'3 0

AD=B+C, (24)

where C is a 9×1 matrix whose components are the nine correcting terms obtained with
combinations of the three deflections and the value of the three virtual fields at the location
of the accelerometer, as given in Table 1.

F J2
3 g(t)

acc

G G2
3 g(t)

accG G
g(t)

accG G
G G
G G−1

3 g(by)
acc

G G−1
3 g(by)

accG GC=−Macc

0
. (25)

G G
G G
G G−1

3 g(bx)
acc

G G−1
3 g(bx)

accG G
0f j

The influence of the correcting term also depends on the mass of the accelerometer with
respect to the mass of the tested plate. To give an idea of the influence of this term to the
identified stiffnesses, a finite element simulation has been performed with the ANSYS 5.2
package. The 100×100×1 mm3 unidirectional tested plate is in graphite/epoxy. Its mass
is 15 g. The accelerometer is modelled as a point mass of 0·7 g located at a corner of the
plate for the twisting mode and at the center of the plate for the two last bending modes.
The plate is meshed with 60×60 Shell 63 quadratic elements. The identification procedure
is applied as in the first part of the study [1] with and without taking into account the
accelerometer to observe its influence. Results are collected in Table 2. As may be seen,
some severe errors appear when the correcting term is not taken into account. D12, which
is known to be the most sensitive term (see e.g., reference [8]), becomes negative, which
is unrealistic. On the other hand, identified values are very close to the actual ones when
that term is considered. As a result, this correction is always done in the experiments
described below.
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4.3.1. Conclusion
In conclusion, the system obtained in the first part of the study [1] is slightly modified

to consider some specificities of the experimental set-up: the virtual work produced by the
inertial forces is directly computed from the slope field provided by the optical set-up and
the influence of the accelerometer is taken into account. As a result, a set of nine linear
equations is obtained. In the following, this system is solved using the least-square method
to obtain the six unknown stiffnesses. Results will be given in terms of normalized
stiffnesses homogeneous to moduli and defined by

D*ij =
12
h3 Dij . (26)

5. RESULTS AND DISCUSSION

5.1.  

Three composite plates have been investigated in the present study. The constitutive
material is a graphite/epoxy, whose elastic coefficients are respectively Ex =124·9
GPa, Ey =9·05 GPa, Gxy =4·96 GPa and nxy =0·34. These constants have been
measured with standard tests described in reference [18]. The stacking sequences
are respectively [04]s , [0, 90]2s and [0, 45, 90, 135]s . The thickness of the three plates
is 1 mm and their specific mass is 1510 kg/m3. The flexural stiffnesses are estimated
using the classical theory of laminated plates and will be compared in the following
to the values obtained from experiments. They are reported in the first row of
Tables 4–6. The plates have a square 100×100 mm planform. They are coated
before testing with a layer of reflective epoxy resin which is obtained by pressing the
plate and the resin between two glass plates. This layer is very thin (less than

T 2

Identified normalized stiffnesses with and without the correcting term for the unidirectional
graphite/epoxy plate

D*11 D*22 D*12 D*66 D*16 D*26

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

Actual value 125·00 9·12 3·10 4·96 0 0
Calculated value without correcting term 119·81 9·85 −1·40 3·91 −0·06 −0·54
Calculated value with correcting term 129·83 9·25 2·97 5·02 0·13 0·05

T 3

Consistency of two measurements performed in two orthogonal directions. Comparison
between the mean value of oxy and oyx on the top surface of the vibrating plate

gacc oxy oyx Difference
(m/s2) (10−6) (10−6) (10−6)

22·3 0·32 0·39 0·07
26·6 0·41 0·45 0·04
39·5 0·72 0·71 0·01
56·5 1·07 1·07 0·00
65·6 1·25 1·22 0·03
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Figure 4. Shear modulus of the unidirectional plate for various excitation levels. Q, With correcting term;
q, without correcting term; —, Iosipescu (after Pierron and Vautrin [18]).

10−2 mm) and it has been checked that its influence on the measured stiffnesses is
negligible.

5.2.  

5.2.1. Introduction
Some preliminary twisting tests have been performed to verify first the consistency of

two sets of results obtained along both x and y directions and second to examine the
independence of the results on the magnitude of the excitation. To simplify the procedure,
the first plate described above, whose sides are parallel to the directions of orthotropy, is
tested and it is assumed that the average curvatures along both x and y directions are zero.
Hence, in the present section

K(t)
xx =0, K(t)

yy =0. (27)

5.2.2. Consistency of the experimental results
As explained above, K(t)

xy can be calculated either with the 1w/1x or the 1w/1y slope
pattern and the results are expected to be equal. Both of them have been computed in the
present experiment and compared. Results given in terms of average surface strain
components are collected in Table 3. The average surface strain components exy and eyx

are obtained by multiplying respectively K(t)
xy and K(t)

yx by −h/2S. As may be seen, both sets
of results are very close: the difference is less than 0·07×10−6 and it tends to decrease as
the acceleration increases. In that case, the two sets of measurements performed in two
orthogonal directions are consistent. In the following, K(t)

xy will therefore be the average of
the calculations performed in both x and y directions.

5.2.3. Linearity of the response
The non-linearity of the shear properties of composite materials is often described when

quasi-static tests are carried out at higher strain levels than in dynamics (e.g., reference
[19]). As the above method is based on the assumption that the tested plates are elastic,
it must be checked that the shear modulus does not depend on the magnitude of the load,
i.e., on the magnitude of the vibration in the present case. When the excitation produced
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by the loudspeaker increases, the acceleration measured by the accelerometer and the stress
and strain levels increase in the plate and so it can be checked that the shear stiffness
remains constant.

As K(t)
xx and K(t)

yy have been assumed to be zero in the above section, the third equation
in system (24) only involves D66. Hence this term can be determined directly

D66 =−
1

2K(t)
xy

v2
t (rhI(t)

3 +Macc a2). (28)

The normalized shear stiffness D*66 is computed for different excitation levels using the
above equation. It is expected to be equal to the in-plane shear modulus as the plate is
unidirectional. Results obtained at different levels are plotted in Figure 4. As may be seen,
this stiffness remains independent of the stress level. It is also very close to the static value
measured on the same material with a standard Iosipescu shear test [18]. Finally, the
influence of the correcting term can be assessed in the present case, as the D*66 term
determined without that term has also been reported in the same figure. It can be seen
that ignoring that term leads to a severe error.

5.2.4. Example of slope patterns
Examples of slope fields measured on the unidirectional plate are given in Figures 5–7.

For the twisting mode, it is clear that slopes in the x direction mainly depend on y. In
the same way, slopes in the y direction mainly depend on x. For that mode, the xy term
would obviously be predominant in the expansion of the mode shape using the
Rayleigh–Ritz method. Note however that fringes are slightly inclined in the second
pattern. It has been checked with a finite element simulation that it is due to the
accelerometer. The bending mode along the y direction is depicted in Figure 6. As may
be seen, the curvature in the y direction is predominant, while the curvature along the x

Figure 5. Twisting mode, f=169 Hz, measured slope patterns in the x and y directions. —, Threads;
W, accelerometer; 2, direction of the fibers.
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Figure 6. Bending in the y direction, f=244 Hz, measured slope patterns in the x and y directions.
—, Threads; W, accelerometer; 2, direction of the fibers.

Figure 7. Bending in the x direction, f=876 Hz, measured slope patterns in the x and y directions.
—, Threads; W, accelerometer; 2, direction of the fibers.
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direction is very small. This is mainly due to the fact that the minor Poisson’s ratio, which
directly governs the ratio between curvatures along the x and y directions, is very small
for such an orthotropic plate. The bending along the x direction is finally illustrated in
Figure 7. In that direction, the major Poisson’s ratio is involved and the curvature in the
y direction is therefore higher. Note that the order of magnitude of the slopes for the three
mode shapes remains less than 2×10−3 rad. The order of magnitude of the maximum
deflection is about some tens of mm for the three modes.

5.3. 

The values obtained with the above procedure applied to the three laminated plates
described in section 5.1 are collected in Tables 4–6 and compared to the so-called expected
ones, which are calculated with the classical lamination theory. As a general remark, a
good agreement between expected and identified values can be observed. The difference
between both sets of results depends on the stacking sequence as well as on the stiffness
itself. The highest difference is generally obtained for D*12, which is directly related to the
Poisson’s effect. This result is in good agreement with the conclusions of numerical
simulations carried out in the first part of this study [1]. They showed that this parameter
was the most sensitive to measurement errors. This property is certainly due to its small
contribution to the mode shapes. This point has already been noted by different authors
(see e.g., reference [8]). In the same way, the shear coupling stiffness D*16 presents a high

T 4

Normalized stiffnesses computed with the classical lamination theory compared with the
identified corresponding ones, unidirectional graphite/epoxy plate

D*11 D*22 D*12 D*66 D*16 D*26

Expected (GPa) 124·90 9·12 3·10 4·96 0 0
Identified (GPa) 121·14 9·82 2·08 5·49 −2·09 −0·13
Difference (%) −3·0 7·7 −32·9 10·7 — —

T 5

Normalized stiffnesses computed with the classical lamination theory compared with the
identified corresponding ones, [0, 90]2s graphite/epoxy plate

D*11 D*22 D*12 D*66 D*16 D*26

Expected (GPa) 89·40 45·60 3·10 4·96 0 0
Identified (GPa) 89·83 47·83 4·24 5·07 −1·92 −0·47
Difference (%) 0·5 4·9 36·7 2·2 — —

T 6

Normalized stiffnesses computed with the classical lamination theory compared with the
identified corresponding ones, [0, 45, 90, 135]s graphite/epoxy plate

D*11 D*22 D*12 D*66 D*16 D*26

Expected (GPa) 86·40 31·60 11·60 13·40 8·21 8·21
Identified (GPa) 85·99 29·26 7·16 13·48 8·79 10·33
Difference (%) −0·5 −7·4 −38·2 0·6 7·1 25·8
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difference between expected and identified values for the last plate. This is probably due
to the same reason as above. D*66, D*22 and D*11 are obtained with the highest accuracy, as
their influence is prevailing in the first, second and third modes respectively. For the first
plate, it must be noted that the identified value of D*66 is different from the value obtained
in the above section (5·5 GPa instead of 5·0 GPa), when the coupling stiffnesses are
assumed to be zero. It seems that the extra freedom introduced by non-zero values of D*16

and D*26 influence the identified value of D*66, as they are involved in the same equations
in system (24). Note however that the presently so-called expected values are in fact
computed with the classical lamination theory. Hence, eventual discrepancies due to the
manufacturing or to the misalignement of the fibers are not taken into account. As a result,
the assumption of zero values for D*16 and D*26 is probably not rigorously verified in the
present case.

6. CONCLUSION

A solution of the inverse problem of determining elastic constants of anisotropic plates
from whole-field slope measurements is presented in this paper. Three modes involving the
whole set of unknowns are considered. The main feature of the present approach is to take
into account measured values of natural frequencies as well as measured mode shapes.
Then, no assumption is made concerning the mode shape contrarily to most of the methods
found in the literature which are based on the Rayleigh–Ritz or finite element methods.
From a numerical point of view, the main advantage is that the stiffnesses are determined
directly. Experimental results obtained on a set of three different anisotropic plates show
the robustness of the method.
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